martes, 25 de agosto de 2015

UNIDAD 1 NÚMEROS COMPLETOS

1.1 Definición y origen de los números complejos. 


La primera referencia conocida a raíces cuadradas de números negativos proviene del

trabajo de los matemáticos griegos, como Herón de Alejandría en el siglo I antes de Cristo, como resultado de una imposible sección de una pirámide. Los complejos se hicieron más patentes en el Siglo XVI, cuando la búsqueda de fórmulas que dieran las raíces exactas de los polinomios de grados 2 y 3 fueron encontradas por matemáticos italianos como Tartaglia, Cardano.

Aunque sólo estaban interesados en las raíces reales de este tipo de ecuaciones, se encontraban con la necesidad de lidiar con raíces de números negativos. El término imaginario para estas cantidades fue acuñado por Descartes en el Siglo XVII y está en desuso. La existencia de números complejos no fue completamente aceptada hasta la más abajo mencionada interpretación geométrica que fue descrita por Wessel en 1799, redescubierta algunos años después y popularizada por Gauss. La implementación más formal, con pares de números reales fue dada en el Siglo XIX.


Definición de número complejo



Los números complejos z se pueden definir como pares ordenados

z = (x, y)

de números reales x e y, con las operaciones de suma y producto que especificaremos más adelante. Se suelen identificar los pares (x, 0) con los números reales x.

1.2 Operaciones fundamentales con números complejos. 



Varias propiedades de la suma y del producto de números complejos coinciden con las de los números reales. Recogeremos aquí las más básicas y verificamos algunas de ellas.

Las leyes conmitativas

z1 + z2= z2 + z1, z1z2 = z2z1

y las asociativas

(z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 = z1(z2z3) 



se siguen fácilmente de las definiciones de la suma y el producto de números complejos, y del hecho de que los números reales las satisfacen. Por ejemplo, si

z1 = (x1, y1) y z2 = (x2, y2),

entonces

z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = (x2, y2) + (x1, y1) = z2 + z1

La verificación de las restantes, así como de la ley distributiva

z(z1 + z2) = zz1 + zz2,

es similar.

De acuerdo con la ley conmutativa del producto, iy = yi; luego está permitido escribir

z = x + iy o z = x + yi

Además, por las leyes asociativas, una suma z1 + z2 + z3 o un producto z1z2z3 están bien definidos sin paréntesis, igual que ocurría con los números reales.

La identidad aditiva 0 = (0, 0) y la idenidad multiplicativa 1 = (1, 0) de los números reales se transfieren al sistema de los números complejos. O sea,

z + 0 = z y z * 1 = z

para todo número complejo z. Más aún, 0 y 1 son los únicos números complejos con tales propiedades. Para establecer la unicidad de 0, supongamos que (u, v) es una identidad aditiva, y escribamos

(x, y) + (u, v) = (x, y),

donde (x, y) es cualquier número complejo. Se deduce que

x + u = x e y + v = y;

o sea, u = 0 y v = 0. El número complejo 0 = (0, 0) es, por tanto, la única identidad aditiva.

Cada número complejo z = (x, y) tiene asociado un inverso aditivo

-z = (-x, -y)

que satisface la ecuación z + (-z) = 0. Además, hay un sólo inverso aditivo para cada z, pues la ecuación (x, y) + (u, v) = (0,0) implica que u = -x y v = -y.

Los inversos aditivos se usan para definir la resta:

z1 - z2 = z1 + (-z2).

Luego si z1 = (x1, y1) y z2 = (x2, y2), entonces

z1 - z2 = (x1 - x2, y1 - y2) = (x1 - x2) + i(y1 - y2).

Análogamente, para todo número complejo z = (x, y) no nulo, existe un número complejo z-1 tal que zz-1 = 1. Este inverso multiplicativo es menos obvio que el aditivo. Para hallarlo, buscamos números reales u, v expresados en términos de x e y, tales que

(x, y)(u, v) = (1,0).




1.3 Potencias de i,modulo o valor absoluto de un numero complejo. 
Valor absoluto. El valor absoluto, módulo o magnitud de un número complejo z viene dado por la siguiente expresión: Si pensamos en z como un punto en el plano; podemos ver, por el teorema de Pitágoras, que el valor absoluto de un número complejo coincide con la distancia euclídea desde el origen del plano. Si el complejo está escrito en forma polar z = r eiφ, entonces |z| = r. Podemos comprobar con facilidad estas tres importantes propiedades del valor absoluto para cualquier complejo z y w. Por definición, la función distancia queda como sigue d(z, w) = |z – w| y nos provee de un espacio métrico con los complejos gracias al que se puede hablar de límites y continuidad. La suma, la resta, la multiplicación y la división de complejos son operaciones continuas. Si no se dice lo contrario, se asume que ésta es la métrica usada en los números complejos.
Modulo de un vector
Se llama módulo de un complejo a la longitud del vector que lo representa, lo designaremos por ½ Z½ o simplemente por r. Su valor se obtiene por la conocida relación: ½ Z1½ = r = Que es la relación que nos permite determinar la longitud de un vector. Sea Z un número complejo. Explique como determinar Sea Z= a +bi.
La raíz cuadrada del complejo a + bi será otro complejo que llamaremos x + yi: = x + yi = x + yi (])
Elevando ambos miembros al cuadrado y reduciendo términos:
a + bi = x2 + 2xyi + y2i2
a + bi = x2 + 2xyi + y2 (−1)
a + bi = (x2 – y2) + 2xyi
Igualando partes reales y partes imaginarias se forma el siguiente sistema: Despejando “y” en ( ]]] ): Sustituyendo este valor en ( ]] ): Expresando en términos de X2:
Tomamos únicamente el valor positivo, pues es mayor que “a” y x2 no puede ser negativo. Además = S
En la ecuación ( ]]] ) podemos observar que “b” tiene el mismo signo que el producto “xy”. Por lo tanto, si “b” es positivo “x” e “y” serán de igual signo y tendremos que: Para b > 0 Para b < 0
Como los signos que deben tomarse para X e Y deben satisfacer la ecuación 2XY= b, hay que hacer las siguientes consideraciones:
Para b > 0: Las raíces deben ser; ambas del mismo signo: positivas o negativas (+,+), (- , -) Para b < 0: Las raíces, se toman con signos opuestos :(+,-),(-, +)

1.4 Forma polar y exponencial de un numero complejo. 



Forma Polar

Sean r y θ coordenadas polares del punto (x, y) que corresponde a un número complejo no nulo z = x + iy. Como

x = r cos θ e y = r sen θ

z puede ser expresado en forma polar como

z = r(cosθ + i senθ).

En análisis complejo, no se admiten r negativos; sin embargo, como en el Cálculo, θ tiene infinitos valores posibles, incluyendo valores negativos.

Forma exponencial

La ecuación

eiθ = cos θ + i sen θ

que define el simbolo eiθ, o exp (iθ), para todo valor real de θ, se conoce como fórmula de Euler. Si escribimos un número complejo no nulo en forma polar

z = r(cos θ + i sen θ),

la fórmula de Euler permite expresar z más compactamente en forma exponencial:

z = reiθ

1.5 Teorema de De Moivre, potencias y extracción de raíces de un numero complejo. 



Potencias de números complejos

Las potencias enteras de un número complejo no nulo z = reiθ vienen dadas por

z = rneinθ (n = 0, +1, -1, +2, -2 ...)

Como zn+1 = zzn cuando n=1,2,..., esto se comprueba fácilmente para valores positivos de n por inducción, para el producto de números complejos en forma exponencial. La ecuación es válida también para n = 0 con el convenio de que z0 = 1. Si n = -1, -2..., por otro lado, definimos zn en términos del inverso multiplicativo de z escribiendo zn = (z-1)m, donde m = -n = 1, 2, ... Entonces, como la ecuación z = rneinθ es válida para potencias enteras positivas, se sigue de la forma exponencial de z-1 que

zn = [1/r ei(-θ)]m = (1/r)m eim(-θ) = rneinθ

Por tanto, la ecuación z = rneinθ es válida para toda potencia entera.

Nótese que si r = 1, z = rneinθ se convierte en

(eiθ)n = eiθn (n = 0, ±1, ±2 ...)

Cuando se expresa en la forma

(cos θ + i sen θ)n = cos nθ + i sen nθ

que se le conoce como la fórmula de De Moivre

1.6 Ecuaciones polinomicas.

Una raíz del polinomio p es un complejo z tal que p(z)=0. Un resultado importante de esta definición es que todos los polinomios de grado n tienen exactamente n soluciones en el campo complejo, esto es, tiene exactamente n complejos z que cumplen la igualdad p(z)=0, contados con sus respectivas multiplicidades. A esto se lo conoce como Teorema Fundamental del Álgebra, y demuestra que los complejos son un cuerpo algebraicamente cerrado. Por esto los matemáticos consideran a los números complejos unos números más naturales que los números reales a la hora de resolver ecuaciones.


¿Cómo resolver una ecuación de primer grado? Para la resolución de ecuaciones de primer grado podríamos definir un esquema con los pasos necesarios. Para empezar comenzemos con una ecuación de primer grado sencilla: 9x − 9 + 108x − 6x − 92 = 16x + 28 + 396 Nuestro objetivo principal es dejar sola la x en uno de los terminos, el izquierdo o el derecho.

1. TRANSPOSICIÓN: Lo primero que debemos hacer es colocar los terminos con X en un lado, y los numeros enteros en otro. Para ello, podemos ver que hay algunos números que tendremos que pasarlos al otro termino. Esto lo podemos hacer teniendo en cuenta que: Si el número esta restando (Ej: −6): Pasa al otro lado sumando (+6) Si el número esta sumando (Ej: +9): Pasa al otro lado restando (−9) Si el número esta multiplicando (Ej: •2) Pasa al otro lado dividiendo (en forma fraccionaria) (n/2) Si el número esta dividiendo (en forma fraccionaria) (Ej: n/5) Pasa al otro lado multiplicando (•5) Una vez hemos pasado todos los terminos en nuestra ecuación, esta quedaría así: 9x + 108x − 6x − 16x = 28 + 396 + 9 + 92 Como podrás comprobar todos los monomios con X han quedado a la izquierda del signo igual, y todos los números enteros se han quedado en la derecha.

2. SIMPLIFICACIÓN: Nuestro siguiente objetivo es convertir nuestra ecuación en otra equivalente más simple y corta, por lo que realizaremos la operación de polinomios que se nos plantea Es decir en nuestro caso, por un lado realizamos la operación: 9x+108x-6x-16x Y por otro lado: 28+396+9+92 De forma que nuestra ecuación pasaría a ser esta: 95x = 475

3. DESPEJAR: Ahora es cuando debemos cumplir nuestro objetivo final, dejar la X completamente sola, para ello volveremos a recurrir a la transposición. Es decir, en nuestra ecuación deberíamos pasar el 95 al otro lado, y, como está multiplicando, pasa dividiendo: x = 475 / 95 Comprueba que el ejercicio ya está teóricamente resuelto, ya que tenemos una igualdad en la que nos dice que la x ocultaba el número 475/95. Sin embargo debemos simplificar esto. Resolvemos la fracción (Numerador dividido entre denominador) en caso de que el resultado diera exacto, si nos diera decimal, simplificamos la fracción y ese es el resultado.

No hay comentarios:

Publicar un comentario